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O. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this paper, A denotes a subset of the real line with at least n + 2
elements, and I(A) denotes the convex hull of A. A is said to satisfy
property B if between any two distinct points of A there is another point
of A. If, in addition, A contains neither a first nor a last element (i.e.,
inf A ¢ A, sup A $ A) then A is said to satisfy property D. The numbers infA
and sup A are called the endpoints of A.

A sequence of functions Z" = {=o, ..., z,,} defined on A is called a (weak)
Tchebycheff system if it is linearly independent and for all points
X o< ... <x" in A, det{=i(x,)};~j"0>0 (~O). If Zk is a (weak) Tchebycheff
system for k = 0, ..., n, we say that Z" is a (weak) Markov system. Note
that, in this case, =0> 0 (zo ~ 0). If =0 == 1, we say that Z" is normalized. In
the following definitions, when we say that a basis U" = {uo, ... , u,,} is
obtained from Z" by a triangular linear transformation, we mean that
uo=zoand Uk-=kEspan{zO, .... Zk_t} (k=I, ...,n).
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DEFINITION 1. Z" is said to satisfy condition E if for all C E I(A) the
following two requirements are satisfied:

(a) If Z n is linearly independent on [c, x) (1 A then there exists a
basis {uo' 00" un} for span(Z,,), obtained by a triangular linear transforma
tion, such that for any sequence of integers 0 ~ k(O) < 00' < k(m) ~ n,
{ Uk\rd;"~ 0 is a weak Markov system on A (1 [c, x).

(b) If Z" is linearly independent on ( - x, c] (1 A then there exists a
basis {vo' 00" V,,} for span( Z n), obtained by a triangular linear transforma
tion, such that for any sequence of integers 0 ~ k(O) < ... < k(m) ~ n,
{( - 1r ktr)Vk(rl} ;'~ 0 is a weak Markov system on (- x, c] (1 A.

DEFINITION 2. Zn is said to satisfy condition I if for every real number
c,Z" is linearly independent on at least one of the sets (-x,c)(1A and
A (1 (c, c£).

DEFINITION 3. ZII IS called weakly nondegenerate if it satisfies both
conditions I and E.

DEFI!'lITlON 4. Zn is representable if and only if, for all C E A, there is a
basis Un' obtained from Zn by a triangular linear transformation (hence,
uo(x) = zuer)); a strictly increasing function h (an "embedding function")
defined on A, with h(c) = c; and a set WII = {WI' 00" IVn} of continuous,
increasing functions defined on l(h(A)), such that

.h(x I

u1(x)=uo(x)j dw1(t 1)
c

In this case we say that (h, c, W II , Un) is a representation of Zn.

We note that [2, Theorem 5.22] proves that a normalized weak Markov
system is representable if and only if it satisfies condition E.

In the sequel, given a set W" as above, we will define functions

Po(x) = I,

and

Ix ftl r t , I
p;(x)= ('c 00) dw j (t;)oo·dwdtd(i=l,oo.,n).

( 1)
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The purpose of this paper is to solve a number of problems motivated
by the previous work of one of the authors. For example, it is shown in
[5] that every weakly nondegenerate weak Markov system is represen
table. However, an example is also given of a representable system that is
not weakly nondegenerate. Thus, the question naturally arises as to what
conditions, in addition to representability, must be imposed to obtain a
necessary and sufficient condition. In Theorem I we answer this question
for Markov systems, but first we introduce an important definition.

DEFINITION 5. Let W n = {1\'" ... , w n } be a sequence of real-valued func
tions defined on (a, b), let h be a real-valued function defined on an A c ~

with h(A) c (a, b), and let X o< ... < X n be points of h(A). We say that W"
satisfies property M with respect to h at X o< ... < X n if there is a sequence
{t i. J: i = 0, ... , n; .i = 0, ... , n - i} in h( A) such that

(a) x]=to).i=O, ... n);

(b) t i. j < t 1 + 1, J < t I. i + 1 (i = 0, ..., n - 1; j = 0, ..., n - i);

(c) For i= I, ...,n, w,(x) is not constant at t i.] (j=O, ...,n-i).

To say that a function f is not constant at a point c E (a, b) is to say that
for every c;>0 there are points X"x2E(a,b) with c-c;<x,<c<
X2<C+C;, such thatf(xIl#f(x2).

If W" satisfies property M for every choice of points X o< ... < x" in
h(A) then we simply say that W" satisfies property M with respect to h
on A.

THEOREM I. Suppose that A has neither a first nor a last element. Then
the fol/owing statements are equivalent:

(a) Zn is a weakly nondegenerate normalized Markov system;

(b) Z" is representable, and for every representation (h, c, Wn , UtI)
and any d E ~ there is a sequence Xo < .. , < x" in A for which Wn satisfies
property M with respect to h on (-,x;, d) (l A, or else there is a sequence
)'0 < ... < Yn in A for which Wn satisfies property M with respect to h on
A (l (d, 00).

Remark 1. It follows from (b) => (a) in Theorem 1 that if (b) is satisfied
for some representation then it must be satisfied for all representations.

DEFINITION 6. Let wo, ... , W n be continuous on an open interval I, with
W o > 0 and W" ... , W n strictly increasing in I. Let f be a real-valued function
defined on I. For x E I, set
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and, provided the limits exist,

35

D f( )
-1' Dk_J(x+h)-Dk .. J(x)

k X - 1m
h -0 Wk(x + h) - wdx)

(k = I, ..., n).

Set w~ = {wo, ..., wk } and let D( WZ, I) denote the set of functions f for
which Do/, ..., Dkf exist in I. If f E D( w2, I) we say that f is relatively
differentiable with respect to W~.

Remark 2. f is an clement of D( W?, I) if and only if (j/wo) c WI 1 is dif
ferentiable in wdl) and ((f/wo)cw 1 l),(wdx))=DJ(x). Also note that if
wo(x) == I and the functions p;(x) are given by (I), then D,_l p;(x) =
If, (x) - WI (c) (i = I, ..., n). This is an easy consequence of Lemma I, below.

DEFINITIO:-l 7. Let Z" be a Tchebycheff system on A, let xo, ..., x" be
distinct points of A, and let f be a real-valued function defined on A. The
(generalized) divided difference of f of order n with respect to Z" is defined
as

Z" .. 1 (X o)

Z,,(Xo)

(for n =°this reduces to [~~] f = f(xo)/zo(xo)).

The next theorem generalizes a result that is well known for extended
complete Tchebycheff systems (see [I]).

THEOREM 2. Let w2 = {wo, ..., Wk} be as in Definition 6 and set
v, = wO ' Pi' with Pi given by (I). If f E D( WZ, I), then for all Xo < ... < Xk
in I,

[ vo, , V'Jf= DJ(U
x o, , Xi

where (0 = xo, and X o < (,< Xi U= I, ... , k).

(i = 0, ..., k),



36 ZALIK AND ZWICK

COROLLARY I. Under the assumptions ol Theorem 2,

. [VO,,,.,v i 1J
,".ll~[ .~ xo,,,.,"; , r,=D, ,v;(O=lI',(O-wi(c)

In [6] the following theorem is proved:

U= I, .", n).

THEOREM A. If A contains neither a first nor a last element, then Z" is
a Markor system if and only If it has a representation (h, c, W", U,,) such
that W" satisfies property M with respect to h on A.

We say that the span of a Markov system Z" defined on a set A can be
continued to the left if there is an n-dimensional linear space U defined on
a set of the form (d,a)uA, d<a (where a=infA), such that Ulo4=
span(Z,,) and U has a basis UtI that is a Markov system (i.e., UtI is a
Markov space).

Remark 3. Z" is automatically weakly nondegenerate if it is a Markov
system and if A has no first or last element: Condition I is satisfied and
condition E follows from the possibility of extending Z" both to the left
and to the right of any c E A (see the proof of Theorem t for details).

The situation is different if A has a first or a last element. Our next result
is based on the concepts of generalized divided difference and relative
differentiation.

THEOREM 3. Let Z" he a Markov system on a set A with property B, and
assume that if inf A E A or sup A E A, then they are accumulation points of
A and all the ~, are continuous there. Then the following statements are
equivalent:

(a) Z" is a weakly nondegenerate Markov system;

(b) If inf A E A, then Z" can he extended to the left, and if sup A E A,
then Z" can be extended to the right;

(c) If d is an endpoint of A such that dE A, then

(i= I, "., n);

(d) Ifinf A EA, then Z" has a representation (h, c, W", U,,) such that
the w, are hounded from below on h(A), and if sup A E A, then Z" has a
representation (h, c, W", U,,) such that the W, are bounded from above on
h(A ).

(e) If (h,c, W", U,,) is a representation for Z" on A'=A\{infA,
sup A}, W o == I, and Pi are de-fined as in (I), then for any endpoint d of h(A)
such that dE h(A), lim, -d D, I p,(x) is finite.
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In [3, Theorems 2.2 and 2.6J, part (d) of Theorem 3 was shown under
hypotheses similar to those in (a).

1. E-SYSTEMS A:-ID PROOF OF THEOREM I

DEFlI"ITION 8. We say that Z" is a (weak) E-system if for any integers
O~r(O)< ... <r(m)~n, {Zr(kl}k=o'H.m is a (weak) Markov system on A.
The linear span of a (weak) E-system will be called a (weak) E-space.

E-systems were utilized in [3J and in [7] to give a necessary and suf
ficient condition for extending the linear span of a Markov system beyond
its domain of definition. For example, the following theorem is proved in
[7]:

THEOREM B. Let Z" he a Markov system on a hounded set A with
property B. Assume, Jurther, that if an endpoint of A helongs to A then it is
a point oj accumulation oj A and all the elements oj Z" are continuous there.
Then span(Z,,) can he continued to the left (f and only if it has a hasis that
is an E-system.

Assume that Z" is a Markov system defined on a set A containing both
of its endpoints, and that all its elements are continuous at these endpoints.
Assume, moreover, that the linear span S" of Z" contains a basis that is an
E-system. From Theorem B we know that S" can be continued to a
Markov space V" defined on a set of the form (d, a) u A, d < a. Thus, the
restriction of U" to any set of the form (d', a) u A, with d < d' < a, can be
continued to the left, and by a second application of Theorem B we con
clude that U" is an E-space. Thus, if U" denotes the linear space obtained
from U" by making the change of variable t --+ - t, from [7, Remark 2] we
readily conclude that V,,- is an E-space. Applying Theorem B to S" ' we
conclude that U" can be continued to the right (cr. [7, Corollary 2]). The
foregoing discussion demonstrates that under the conditions of Theorem B,
an E-system can be simultaneously continued both to the left and to the
right. Conclusions similar to these can also be found in [3].

Proof of Theorem 1. (a)~(b) From [5, Theorem I], Z" is repre
sentable. Let (h, c, W", U,,) be a representation for Z". Then ui = P,h
(i = 0, ... , n), where Pi are defined as in (I ). Define P" = {Po, ... , p,,}, and let
d be an arbitrary real number. P" is linearly independent either on
h(A) (l (d, Y.;) or on ( - x, d) (l h(A), and we will assume the latter. By [6,
Lemma J it must satisfy property M (with respect to the identity function)
at some X o < '" < x" in (- rx.:, d) (l h(A), hence (b) follows.

(b)~(a) Let (h,c, W", U,,) be a representation for Z" and let dEIR
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be given. If property M is satisfied with respect to h for, say, some choice
of points in (- 00, d) n A, then from [6, LemmaJ Un(and, hence, Zn) is
linearly independent on (- x, d) n A. Thus, condition I is satisfied. An
argument similar to the one given in [7, Theorem 2] shows that Un is a
weak Markov system. Since Un is obtained from Zn by a triangular linear
transformation, it is clearly normalized.

If A has neither a first nor a last element, then on A n (e, 00 ), Un can be
continued to the left, whence from [7, Theorem 2J, it satisfies part (a) of
condition E. Moreover, since on (- 00, c) n A, Un can be continued to the
right, from [7, Corollary 3] we deduce that is also satisfies part (b) of
condition E. I

Remark 4. Suppose that if inf A E A, it is an accumulation point of A,
and vI/va is continuous at inf A, where va and VI are as in Theorem 2. Since

V
-.2. (x) = WI (h(x)) - WI (c),
VA

we have

V
WI (h(x)) =-.2. (x) + WI (c).

VA

Thus,

h(x) = 11'; 1(11'1 (h(x))) = w~ I G~ (x) + WI (C)).

hence h is continuous at inf A. A similar statement holds for sup A.

2. RELATIVE DIFFERENTIATION AND PROOF OF THEOREM 2

The proof of Theorem 2 is based on the following two lemmas.

LEMMA I. Let f and g be relatively differentiable with respect to W~,

where 11'0 == 1, and assume that Dig # 0 on (a, b). Then

f(b) - f(a)

g(b) - g(a)

for some a < ~ < h, and

DI!(x) = lim f(x+h)- [(x)
h-.owl(x+h)-wl(x)
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f(b) - f(a) /'(0 DJd~o)

K(b) - g(a) = K'(0 =Dig I (~o)"

39

where ~O=WII(~). I
Remark 5. Lemma 1 is false if Wo =$ 1 (e.g., if wo(x) = WI (x) = f(x) = x,

g(x) =x 2
).

LEMMA 2. Let f be relatively differentiable with respect to W~. Then for
k ~ 1, there are points x i _ I < ~i < Xi (i = 1, ..., k) such that

Proof In the representation of [:~::::~:]f as a ratio of determinants,
first divide each column in both numerator and denominator by the value
of Vo (t) that corresponds to that column (this has the effect of making
Wo=1), then subtract from the last column in both numerator and
denominator the preceding one. The resulting quotient has the same value
as the original divided difference. Thus, the divided difference may be
expressed in the form

F(xk) - F(Xk I)

G(Xd-G(Xk_d'

where F and G are relatively differentiable with respect to WI'
By Lemma 1 this equals D I F(~k)/DI G(~k) for some Xk 1 < ~k < Xk; i.e.,

the last column in both numerator and denominator is replaced by the
corresponding relative derivative at ~k' We now perform a similar opera
tion on the second to the last column, and so on, until columns 2 through
k have been replaced. Since the first element in each of these columns is
zero, we finally end up with [DI~I•. DI"k] D f I

'I ....• ~k I

Proof of Theorem 2. The proof is by induction on k. For k = 0 we have

For k = 1, from Lemma 2 we have
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For k ~ 2, we use Lemma 2 to get

for Xi-l<~i<Xi (i=!, ...,k). Note that D1vdx)=1. For i=2, ...,k, the
Mean Value Theorem for Stieltjes integrals [4] yields

. JX+IIJII ... Jt, Id"· (t)···dw (t )D\v(x)=hm.\ , , I t I I

I II ~ 0 J; + II dw I (t I )

with x < ~II < X + h; hence

(i = 2, ... , k).

Setting Po=! and Pi=D1v i + 1 U=!, ...,k-!), we see that
{Po,p" ...,Pk-l} is a Markov system defined in the same way as
{Po, ..., pd, but using {W2' ... , wk }. Let the corresponding relative differen
tiation operators be denoted by Di . By the induction hypothesis we then
have

for ~ I < 'k < ~k; i.e., Xo < 'k < Xk· This completes the proof of
Theorem 2. I

3. DIVIDED DIFFERENCES AND PROOF OF THEOREM 3

The proof of Theorem 3 is based on several propositions of some inde
pendent interest.

LEMMA 3. Let f, g, and w be continuous in [a, h], with w strictly
increasing and g positive in (a, h). Then for some ~ E (a, h),

J~.r(t) dw(t) flO
J: g(t) dw(t) = g(O·
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Proof By the Mean Value Theorem for Stieltjes integrals, for all
a~c<d~b, there is an '11 E [c, d] such that

I fd
f('1tl = d . f(t) dw(t).

11'( )-w(c) ,

Similarly, for all a ~ c < d ~ h, there is an '12 E [c, d] such that

(2)

(3)

Let

F(x) =rf(t) dw(t),
u

G(x)=rg(t)dw(t),
u

and set Q(x)=F(x)G(b)-F(h)G(x). Since Q(a)=Q(b)=O, Q has a
relative extremum; E (a, h). Thus, in a neighborhood of;,

_ • Q(x)-Q(O
(j·sgn(x-~)·sgn () (Y)='1,

w x -If ~

where £5 = ± 1 and '1 depends on x and equals zero or one. However,

(4)

Q(x) - Q(;) = F(x) - F(~) G(b) _ F(b) G(x) - G(;). (5)
w(x) - 11'(0 w(x) - w(O w(x) - w(~)

From (2), (3), and (5) we have

lim Q(x) - Q(O = flO G(b) - F(h) g(~).
<~~ w(x)-w(~)

On the other hand, (4) implies that

I
. Q(x)- Q(O
1m 0,
,-~ w(x)-w(;)

hence

F(b) f(~)

G(b) = g(~) I

LEMMA 4. Let WI' ... , w" be continuous, strictly increasing functions
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defined on an interval I and let Pi(X) be given by (l). Then for all
xo< ... <xn - 1 in I,

U= 1, ..., n),

where ~o=xo and xO<~j<Xi U= 1, ..., n-I).

Proof The proof is by induction on n. For n == 1, we have

for some Xo < ~ 1 < XI' by Lemma 3.
Define qo(x) = 1 and

r
x

el2 f"
q j (x) = •ct·.. (dw i + I(t I + d ... dw 2 (t 2 )

Then

(i = 1, ..., n - 1).

Pj(X) =rqi- dtd dwdtd
c

(i= I, ..., n).

Proceeding as in [1, XI, Lemma 2.1] we obtain

det{ Pi(Xj )}7.J=o =f' ... j'k det{qi(tj)}7.j~o dwdtk d .. ·dwdto)·
·\"o .q ··1

It follows by a straightforward inductive procedure that {Pi} 7_0 is a
Markov system. Moreover, for k ~ 2, we have

[
Po, , Pk-l] Pk
Xo, , Xk I

det {Pi (xJ }(i = 0.... k- 2. k; )= O'H' k- I)

det {Pi (Xj )} (i. j = O. H, k - 1)

f;~·"f;:=~det{qi(tJ}(i=0'H.k-3.k I;j=O..... k 2) dw d tk _2) .. ·dw 1(t O)



SOME PROPERTIES OF MARKOV SYSTEMS

Using Lemma 3 repeatedly we get

[
PO, ...,Pk-l] [QO, ...,qk-2]

Pk= Qk l'
XO,···,Xk I '1o,···,'1k-2

43

with X,<'1'<XI+ 1 U=0, ...,k-2).
By the inductive hypothesis, this equals Wd~k d - wdc), for

X k 2<~k I <Xk -I' I

LEMMA 5. Let A have property D and let Zn be a Markov system on A
with a representation (h, c, W n, Un) such that the W; are strictly increasing on
(inf h(A), sup h(A)). Then for any xo< ... < X n _ 1 in A,

[
zo, ...,Z,. IJ7 -[uo"",U;-IJ _ ,(J' )_.()

~;- U,-I1,Io,; 1 11, C,
X O, ... , X, 1 XO, ... , X; 1

where ~o = h(xo) and h(xo) <~; < h(x;) U= I, ..., n - 1).

Remark 6. By [8, Corollary] such a representation with w, strictly
increasing exists.

Proof of Lemma 5. The first equality is a consequence of the fact that
{uo, ..., un} is obtained from {zo, ..., Zn} by a triangular linear transforma
tion. Let q; = uJuo U= 0, ..., n); then qo (x) =' 1 and

U= I, ..., n).

The functions q; can be written as q; = p; 0 h for p, satisfying the hypotheses
of Lemma 4. Since

the assertion follows from Lemma 4. I
Before proving Theorem 3, we introduce an additional definition.

DEFINITIO:-l 9. A set Zn defined on a set A is called endpoint non
degenerate (END) if for any point C E A the restrictions of its linear span
S to (- x, c) (\ A and A (\ (c, eN) have the same dimension as S. S is then
called an END space.

Proof of Theorem 3. (b):;. (a) Suppose that inf A E A and sup A!J A.
Let C be a point of A that is not an endpoint. From [5, Theorem 1], Zn
has a representation (h, c, Wn, Un)' As in the proof of [7, Theorem 2], it
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follows that both parts (a) and (b) of Definition I are satisfied. If inf A E A
and e = inf A then part (a) of Definition I is satisfied (for the same reason),
and part (b) is vacuously satsfied since Z" is linearly dependent on
(-x, cJ n A. A similar argument holds if sup A E A and inf A ¢ A.

(d) ~ (c) and (d) ~ (e) These are immediate consequences of
Lemma 5 and the second part of Remark 2, respectively.

(a) ~ (d) We may assume that Z" is normalized (otherwise, divide
first by zo). Suppose that inf A EA. Since Z" is weakly nondegenerate, it has
a representation (h,e, W", U,,) [5, Theorem I]. Moreover, since infAEA
we may select e = inf A. By an argument similar to the one given in the
proof of (b) ~ (a) above, it follows that U" is a normalized weak E-system
on A. From [7, Theorem 2J, U" can be continued to the left to an END
normalized weak Markov space, say, to (- x·, inf A) u A. By [8,
Theorem 3 J, U" has an integral representation (li, c, W", Dn), and we may
assume that z: E A. This implies that the ii'; are bounded from below on
h(A). Moreover, as in the proof of [5, Theorem 2J, since A satisfies
property B, the ii'i must be strictly increasing on (inf li( A), sup lit A)). If
sup A E A, a change of variables t -+ - ( leads to a similar proof.

(d)~(b) Assume that infAEA; then by hypothesis Z" has a
representation (II, c, W", Un) such that the W; are bounded from below on
h(A), and we may assume c = inf A. Thus, U" can be extended to the left
to a Markov system by setting h( t) = ( - c and II', (() = (t - e) + 11', (e), for
« c. A similar argument works for the case sup A EA.

(c) ~ (d) Let A' = A \ {inf A, sup A}. By Lemma 5 and Remark 5, Zn
has a representation (h, c, W,,, U,J on A' such that

[
=0' , =, .. ,] z, = w;(~/ ,) - wile),
xo, , X; _ I

where ~o=h(xo) and h(XO)<~i<h(x,) for i=I, ...,n-1. Suppose that
a = inf A E A (b = sup A E A). By Remark 4, h is continuous at a (at b),
hence by (c),

lim wi(h(x))-wi(c)= Iiminf [zo, ...,z'-']z;>_x;
\_0 xO.· .. ,X,_l·+C/ Xo, .. ·,X j . I

(
lim w;(h(x))-w;(e)= limsup [zo,,,,,Z,-l]Z/<W)
x-b \:O, .... xl_l-h XO,,,,,X i _ 1

for i = 1, ... , n. Thus, (d) is valid.

(e) ~ (d) As in the proof of [5, Theorem 2J, the elements of Wn

must be strictly increasing. The assertion now follows from Lemma 5 and
the second part of Remark 2. I
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