Some Properties of Markov Systems*

R. A. Zalik
Department of Algebra, Combinatoriss, and Analysis, Auburn University, Auburn, Alabama 36849-5307, U.S.A.
AND
D. Zwick*
Department of Mathematics and Statistics, Unitersity of Vermont, Burlington, Vermom 05401, U.S.A.
Communicated by D. S. Luhinsky

Received May 30, 1989; revised January 20, 1990

Abstract

We demonstrate some new properties of Markov systems, involving generalized divided differences, relative differentiation, and weak nondegeneracy. i 1991 Academic Press. Inc.

0. Introduction and Statement of Main Results

In this paper, A denotes a subset of the real line with at least $n+2$ elements, and $I(A)$ denotes the convex hull of A. A is said to satisfy property B if between any two distinct points of A there is another point of A. If, in addition, A contains neither a first nor a last element (i.e., $\inf A \notin A, \sup A \notin A)$ then A is said to satisfy property D. The numbers $\inf A$ and $\sup A$ are called the endpoints of A.

A sequence of functions $Z_{n}=\left\{z_{0}, \ldots, z_{n}\right\}$ defined on A is called a (weak) Tchebycheff system if it is linearly independent and for all points $x_{0}<\cdots<x_{n}$ in $A, \operatorname{det}\left\{z_{i}\left(x_{j}\right)\right\}_{i . j=0}^{\prime \prime}>0(\geqslant 0)$. If Z_{k} is a (weak) Tchebycheff system for $k=0, \ldots, n$, we say that Z_{n} is a (weak) Markov system. Note that, in this case, $z_{0}>0\left(z_{0} \geqslant 0\right)$. If $z_{0} \equiv 1$, we say that Z_{n} is normalized. In the following definitions, when we say that a basis $U_{n}=\left\{u_{0}, \ldots, u_{n}\right\}$ is obtained from Z_{n} by a triangular linear transformation, we mean that $u_{0}=z_{0}$ and $u_{k}-z_{k} \in \operatorname{span}\left\{z_{0}, \ldots, z_{k-1}\right\}(k=1, \ldots, n)$.

[^0]Definition 1. Z_{n} is said to satisfy condition E if for all $c \in I(A)$ the following two requirements are satisfied:
(a) If Z_{n} is linearly independent on $[c, \infty) \cap A$ then there exists a basis $\left\{u_{0}, \ldots, u_{n}\right\}$ for $\operatorname{span}\left(Z_{n}\right)$, obtained by a triangular linear transformation, such that for any sequence of integers $0 \leqslant k(0)<\cdots<k(m) \leqslant n$, $\left\{u_{k(r)}\right\}_{r=0}^{m}$ is a weak Markov system on $A \cap[c, x)$.
(b) If Z_{n} is linearly independent on $(-\infty, c] \cap A$ then there exists a basis $\left\{v_{0}, \ldots, v_{n}\right\}$ for $\operatorname{span}\left(Z_{n}\right)$, obtained by a triangular linear transformation, such that for any sequence of integers $0 \leqslant k(0)<\cdots<k(m) \leqslant n$, $\left\{(-1)^{r(r)} v_{k(r)}\right\}_{r-0}^{m}$ is a weak Markov system on $(-\infty, c] \cap A$.

Definition 2. Z_{n} is said to satisfy condition I if for every real number c, Z_{n} is linearly independent on at least one of the sets $(-x, c) \cap A$ and $A \cap(c, \infty)$.

Definition 3. Z_{n} is called weakly nondegenerate if it satisfies both conditions I and E.

Definition 4. Z_{n} is representable if and only if, for all $c \in A$, there is a basis U_{n}, obtained from Z_{n} by a triangular linear transformation (hence, $\left.u_{0}(x)=z_{0}(x)\right)$; a strictly increasing function h (an "embedding function") defined on A, with $h(c)=c$; and a set $W_{n}=\left\{w_{1}, \ldots, w_{n}\right\}$ of continuous, increasing functions defined on $I(h(A))$, such that

$$
\begin{aligned}
u_{1}(x) & =u_{0}(x) \int_{c}^{h(x)} d w_{1}\left(t_{1}\right) \\
& \vdots \\
u_{n}(x) & =u_{0}(x) \int_{c}^{h(x)} \int_{c}^{t_{1}} \cdots \int_{c}^{t_{n-1}} d w_{n}\left(t_{n}\right) \cdots d w_{1}\left(t_{1}\right) .
\end{aligned}
$$

In this case we say that $\left(h, c, W_{n}, U_{n}\right)$ is a representation of Z_{n}.
We note that [2, Theorem 5.22] proves that a normalized weak Markov system is representable if and only if it satisfies condition E.

In the sequel, given a set W_{n} as above, we will define functions

$$
p_{0}(x) \equiv 1
$$

and

$$
\begin{equation*}
p_{i}(x)=\int_{c}^{x} \int_{i}^{t_{1}} \cdots \int_{c}^{t_{1}} d w_{i}\left(t_{i}\right) \cdots d w_{1}\left(t_{1}\right)(i=1, \ldots, n) . \tag{1}
\end{equation*}
$$

The purpose of this paper is to solve a number of problems motivated by the previous work of one of the authors. For example, it is shown in [5] that every weakly nondegenerate weak Markov system is representable. However, an example is also given of a representable system that is not weakly nondegenerate. Thus, the question naturally arises as to what conditions, in addition to representability, must be imposed to obtain a necessary and sufficient condition. In Theorem 1 we answer this question for Markov systems, but first we introduce an important definition.

Definition 5. Let $W_{n}=\left\{w_{1}, \ldots, w_{n}\right\}$ be a sequence of real-valued functions defined on (a, b), let h be a real-valued function defined on an $A \subset \mathbb{R}$ with $h(A) \subset(a, b)$, and let $x_{0}<\cdots<x_{n}$ be points of $h(A)$. We say that W_{n} satisfies property M with respect to h at $x_{0}<\cdots<x_{n}$ if there is a sequence $\left\{t_{i, j}: i=0, \ldots, n ; j=0, \ldots, n-i\right\}$ in $h(A)$ such that
(a) $x_{j}=t_{0, j}(j=0, \ldots n)$;
(b) $t_{i, j}<t_{i+1, j}<t_{i, j+1}(i=0, \ldots, n-1 ; j=0, \ldots, n-i)$;
(c) For $i=1, \ldots, n, w_{i}(x)$ is not constant at $t_{i, j}(j=0, \ldots, n-i)$.

To say that a function f is not constant at a point $c \in(a, b)$ is to say that for every $\varepsilon>0$ there are points $x_{1}, x_{2} \in(a, b)$ with $c-\varepsilon<x_{1}<c<$ $x_{2}<c+\varepsilon$, such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

If W_{n} satisfies property M for every choice of points $x_{0}<\cdots<x_{n}$ in $h(A)$ then we simply say that W_{n} satisfies property M with respect to h on A.

Theorem 1. Suppose that A has neither a first nor a last element. Then the following statements are equivalent:
(a) Z_{n} is a weakly nondegenerate normalized Markov system;
(b) Z_{n} is representable, and for every representation (h, c, W_{n}, U_{n}) and any $d \in \mathbb{R}$ there is a sequence $x_{0}<\cdots<x_{n}$ in A for which W_{n} satisfies property M with respect to h on $(-\infty, d) \cap A$, or else there is a sequence $y_{0}<\cdots<y_{n}$ in A for which W_{n} satisfies property M with respect to h on $A \cap(d, \infty)$.

Remark 1. It follows from $(b) \Rightarrow(a)$ in Theorem 1 that if (b) is satisfied for some representation then it must be satisfied for all representations.

DEFINITION 6. Let w_{0}, \ldots, w_{n} be continuous on an open interval I, with $w_{0}>0$ and w_{1}, \ldots, w_{n} strictly increasing in I. Let f be a real-valued function defined on I. For $x \in I$, set

$$
D_{0} f(x)=\frac{f(x)}{W_{0}(x)}
$$

and, provided the limits exist,

$$
D_{k} f(x)=\lim _{h \rightarrow 0} \frac{D_{k-1} f(x+h)-D_{k-1} f(x)}{w_{k}(x+h)-w_{k}(x)} \quad(k=1, \ldots, n) .
$$

Set $W_{k}^{0}=\left\{w_{0}, \ldots, w_{k}\right\}$ and let $D\left(W_{k}^{0}, I\right)$ denote the set of functions f for which $D_{0} f, \ldots, D_{k} f$ exist in I. If $f \in D\left(W_{k}^{0}, I\right)$ we say that f is relatively differentiable with respect to W_{k}^{0}.

Remark 2. f is an element of $D\left(W_{1}^{0}, I\right)$ if and only if $\left(f / w_{0}\right)<w_{1}{ }^{1}$ is differentiable in $w_{1}(I)$ and $\left(\left(f / w_{0}\right)=w_{1}^{1}\right)^{\prime}\left(w_{1}(x)\right)=D_{1} f(x)$. Also note that if $w_{0}(x) \equiv 1$ and the functions $p_{i}(x)$ are given by (1), then $D_{i-1} p_{i}(x)=$ $\mathfrak{w}_{i}(x)-w_{i}(c)(i=1, \ldots, n)$. This is an easy consequence of Lemma 1 , below.

Definition 7. Let Z_{n} be a Tchebycheff system on A, let x_{0}, \ldots, x_{n} be distinct points of A, and let f be a real-valued function defined on A. The (generalized) divided difference of f of order n with respect to Z_{n} is defined as

$$
\left[\begin{array}{c}
z_{0}, \ldots, z_{n} \\
x_{0}, \ldots, x_{n}
\end{array}\right] f=\frac{\left|\begin{array}{ccc}
z_{0}\left(x_{0}\right) & \cdots & z_{0}\left(x_{n}\right) \\
\vdots & & \vdots \\
z_{n, 1}\left(x_{0}\right) & \cdots & z_{n}\left(x_{n}\right) \\
f\left(x_{0}\right) & \cdots & f\left(x_{n}\right)
\end{array}\right|}{\left.\begin{array}{ccc}
z_{0}\left(x_{0}\right) & \cdots & z_{0}\left(x_{n}\right) \\
\vdots & & \vdots \\
z_{n-1}\left(x_{0}\right) & \cdots & z_{n-1}\left(x_{n}\right) \\
z_{n}\left(x_{0}\right) & \cdots & z_{n}\left(x_{n}\right)
\end{array} \right\rvert\,}
$$

(for $n=0$ this reduces to $\left[\begin{array}{c}z_{0} \\ x_{0}\end{array}\right] f=f\left(x_{0}\right) / z_{0}\left(x_{0}\right)$).
The next theorem generalizes a result that is well known for extended complete Tchebycheff systems (see [1]).

Theorem 2. Let $W_{k}^{0}=\left\{w_{0}, \ldots, w_{k}\right\}$ be as in Definition 6 and set $v_{i}=w_{0} \cdot p_{i}$, with p_{i} given by (1). If $f \in D\left(W_{k}^{0}, I\right)$, then for all $x_{0}<\cdots<x_{k}$ in I,

$$
\left[\begin{array}{c}
v_{0}, \ldots, v_{i} \\
x_{0}, \ldots, x_{i}
\end{array}\right] f=D_{i} f\left(\xi_{i}\right) \quad(i=0, \ldots, k)
$$

where $\xi_{0}=x_{0}$, and $x_{0}<\xi_{i}<x_{i}(i=1, \ldots, k)$.

Corollary 1. Under the assumptions of Theorem 2,

$$
\lim _{x_{0}, \ldots, x_{i-1}}\left[\begin{array}{c}
v_{0}, \ldots, v_{i} \\
x_{0}, \ldots, x_{i}
\end{array}\right] v_{i}=D_{1},{ }_{1} v_{i}(\xi)=w_{i}(\xi)-w_{i}(c) \quad(i=1, \ldots, n) .
$$

In [6] the following theorem is proved:
Theorem A. If A contains neither a first nor a last element, then Z_{n} is a Markov system if and only if it has a representation $\left(h, c, W_{n}, U_{n}\right)$ such that W_{n} satisfies property, M with respect to h on A.

We say that the span of a Markov system Z_{n} defined on a set A can be continued to the left if there is an n-dimensional linear space U defined on a set of the form $(d, a) \cup A, d<a$ (where $a=\inf A$), such that $\left.U\right|_{A}=$ $\operatorname{span}\left(Z_{n}\right)$ and U has a basis U_{n} that is a Markov system (i.e., U_{n} is a Markot space).

Remark 3. Z_{n} is automatically weakly nondegenerate if it is a Markov system and if A has no first or last element: Condition I is satisfied and condition E follows from the possibility of extending Z_{n} both to the left and to the right of any $c \in A$ (see the proof of Theorem 1 for details).

The situation is different if A has a first or a last element. Our next result is based on the concepts of generalized divided difference and relative differentiation.

Theorem 3. Let Z_{n} be a Markov system on a set A with property B, and assume that if $\inf A \in A$ or $\sup A \in A$, then they are accumulation points of A and all the z_{i} are continuous there. Then the following statements are equivalent:
(a) Z_{n} is a weakly nondegenerate Markov system;
(b) If inf $A \in A$, then Z_{n} can be extended to the left, and if $\sup A \in A$, then Z_{n} can be extended to the right;
(c) If d is an endpoint of A such that $d \in A$, then

$$
\limsup _{x_{0} \ldots \ldots x_{1}+d}\left|\left[\begin{array}{c}
z_{0}, \ldots, z_{t-1} \\
x_{0}, \ldots, x_{i-1}
\end{array}\right] z_{i}\right|<\infty \quad(i=1, \ldots, n) ;
$$

(d) If inf $A \in A$, then Z_{n} has a representation $\left(h, c, W_{n}, U_{n}\right)$ such that the w_{i} are bounded from below on $h(A)$, and if $\sup A \in A$, then Z_{n} has a representation (h, c, W_{n}, U_{n}) such that the w_{i} are bounded from above on $h(A)$.
(e) If $\left(h, c, W_{n}, U_{n}\right)$ is a representation for Z_{n} on $A^{\prime}=A \backslash\{\inf A$, $\sup A\}, w_{0} \equiv 1$, and p_{i} are defined as in (1), then for any endpoint d of $h(A)$ such that $d \in h(A), \lim _{x \rightarrow d} D_{1} \quad p_{i}(x)$ is finite.

In [3, Theorems 2.2 and 2.6], part (d) of Theorem 3 was shown under hypotheses similar to those in (a).

1. E-Systems and Proof of Theorem 1

Definition 8. We say that Z_{n} is a (weak) E-system if for any integers $0 \leqslant r(0)<\cdots<r(m) \leqslant n,\left\{z_{r(k)}\right\}_{k=0, \ldots m}$ is a (weak) Markov system on A. The linear span of a (weak) E-system will be called a (weak) E-space.
E-systems were utilized in [3] and in [7] to give a necessary and sufficient condition for extending the linear span of a Markov system beyond its domain of definition. For example, the following theorem is proved in [7]:

Theorem B. Let Z_{n} be a Markov system on a bounded set A with property B. Assume, further, that if an endpoint of A belongs to A then it is a point of accumulation of A and all the elements of Z_{n} are continuous there. Then $\operatorname{span}\left(Z_{n}\right)$ can be continued to the left if and only if it has a basis that is an E-system.

Assume that Z_{n} is a Markov system defined on a set A containing both of its endpoints, and that all its elements are continuous at these endpoints. Assume, moreover, that the linear span S_{n} of Z_{n} contains a basis that is an E-system. From Theorem B we know that S_{n} can be continued to a Markov space U_{n} defined on a set of the form $(d, a) \cup A, d<a$. Thus, the restriction of U_{n} to any set of the form $\left(d^{\prime}, a\right) \cup A$, with $d<d^{\prime}<a$, can be continued to the left, and by a second application of Theorem B we conclude that U_{n} is an E-space. Thus, if U_{n} denotes the linear space obtained from U_{n} by making the change of variable $t \rightarrow-t$, from [7, Remark 2] we readily conclude that U_{n}^{-}is an E-space. Applying Theorem B to S_{n}, we conclude that U_{n} can be continued to the right (cf. [7, Coroliary 2]). The foregoing discussion demonstrates that under the conditions of Theorem B, an E-system can be simultaneously continued both to the left and to the right. Conclusions similar to these can also be found in [3].

Proof of Theorem 1. (a) \Rightarrow (b) From [5, Theorem 1], Z_{n} is representable. Let $\left(h, c, W_{n}, U_{n}\right)$ be a representation for Z_{n}. Then $u_{i}=p_{1} \because h$ $(i=0, \ldots, n)$, where p_{i} are defined as in (1). Define $P_{n}=\left\{p_{0}, \ldots, p_{n}\right\}$, and let d be an arbitrary real number. P_{n} is linearly independent either on $h(A) \cap(d, x)$ or on $(-x, d) \cap h(A)$, and we will assume the latter. By [6, Lemma] it must satisfy property M (with respect to the identity function) at some $x_{0}<\cdots<x_{n}$ in $(-\infty, d) \cap h(A)$, hence (b) follows.
(b) \Rightarrow (a) Let $\left(h, c, W_{n}, U_{n}\right)$ be a representation for Z_{n} and let $d \in \mathbb{R}$
be given. If property M is satisfied with respect to h for, say, some choice of points in $(-\infty, d) \cap A$, then from [6, Lemma] $U_{n}\left(\right.$ and, hence, $\left.Z_{n}\right)$ is linearly independent on $(-x, d) \cap A$. Thus, condition I is satisfied. An argument similar to the one given in [7, Theorem 2] shows that U_{n} is a weak Markov system. Since U_{n} is obtained from Z_{n} by a triangular linear transformation, it is clearly normalized.

If A has neither a first nor a last element, then on $A \cap(c, \infty), U_{n}$ can be continued to the left, whence from [7, Theorem 2], it satisfies part (a) of condition E. Moreover, since on $(-\infty, c) \cap A, U_{n}$ can be continued to the right, from [7, Corollary 3] we deduce that is also satisfies part (b) of condition E.

Remark 4. Suppose that if $\inf A \in A$, it is an accumulation point of A, and v_{1} / v_{0} is continuous at $\inf A$, where v_{0} and v_{1} are as in Theorem 2. Since

$$
\frac{v_{1}}{v_{0}}(x)=w_{1}(h(x))-w_{1}(c)
$$

we have

$$
w_{1}(h(x))=\frac{v_{1}}{v_{0}}(x)+w_{1}(c) .
$$

Thus,

$$
h(x)=w_{1}^{-1}\left(w_{1}(h(x))\right)=w_{1}^{-1}\left(\frac{v_{1}}{v_{0}}(x)+w_{1}(c)\right)
$$

hence h is continuous at $\inf A$. A similar statement holds for $\sup A$.

2. Relative Differentiation and Proof of Theorem 2

The proof of Theorem 2 is based on the following two lemmas.
Lemma 1. Let f and g be relatively differentiable with respect to W_{1}^{0}, where $w_{0} \equiv 1$, and assume that $D_{1} g \neq 0$ on (a, b). Then

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{D_{1} f(\xi)}{D_{1} g(\xi)}
$$

for some $a<\xi<b$, and

$$
D_{1} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{w_{1}(x+h)-w_{1}(x)}
$$

Proof. Let $f_{1}=f \circ w_{1}^{-1}, c=w_{1}(a)$, and $d=w_{1}(b)$. Then

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{D_{1} f_{1}\left(\xi_{0}\right)}{D_{1} g_{1}\left(\xi_{0}\right)}
$$

where $\xi_{0}=w_{1}^{-1}(\xi)$.
Remark 5. Lemma 1 is false if $w_{0} \not \equiv 1$ (e.g., if $w_{0}(x)=w_{1}(x)=f(x)=x$, $g(x)=x^{2}$).

Lemma 2. Let f be relatively differentiable with respect to W_{1}^{0}. Then for $k \geqslant 1$, there are points $x_{i-1}<\xi_{i}<x_{i}(i=1, \ldots, k)$ such that

$$
\left[\begin{array}{c}
v_{0}, \ldots, v_{k} \\
x_{0}, \ldots, x_{k}
\end{array}\right] f=\left[\begin{array}{c}
D_{1} v_{1}, \ldots, D_{1} v_{k} \\
\xi_{1}, \ldots, \xi_{k}
\end{array}\right] D_{1} f
$$

Proof. In the representation of $\left[\begin{array}{ccc}v_{0}, \ldots, & v_{k} \\ x_{0}, \ldots & x_{k}\end{array}\right] f$ as a ratio of determinants, first divide each column in both numerator and denominator by the value of $v_{0}(t)$ that corresponds to that column (this has the effect of making $w_{0} \equiv 1$), then subtract from the last column in both numerator and denominator the preceding one. The resulting quotient has the same value as the original divided difference. Thus, the divided difference may be expressed in the form

$$
\frac{F\left(x_{k}\right)-F\left(x_{k}-1\right)}{G\left(x_{k}\right)-G\left(x_{k-1}\right)},
$$

where F and G are relatively differentiable with respect to W_{1}.
By Lemma 1 this equals $D_{1} F\left(\xi_{k}\right) / D_{1} G\left(\xi_{k}\right)$ for some $x_{k-1}<\xi_{k}<x_{k}$; i.e., the last column in both numerator and denominator is replaced by the corresponding relative derivative at ξ_{k}. We now perform a similar operation on the second to the last column, and so on, until columns 2 through k have been replaced. Since the first element in each of these columns is zero, we finally end up with $\left[\begin{array}{c}D_{1} v_{1}, \ldots, D_{1} v_{k} \\ \xi_{1} \ldots, \xi_{k}\end{array}\right] D_{1} f$.

Proof of Theorem 2. The proof is by induction on k. For $k=0$ we have

$$
\left[\begin{array}{c}
v_{0} \\
x_{0}
\end{array}\right] f=\frac{f\left(x_{0}\right)}{v_{0}\left(x_{0}\right)}=\frac{f\left(x_{0}\right)}{w_{0}\left(x_{0}\right)}=D_{0} f\left(x_{0}\right)
$$

For $k=1$, from Lemma 2 we have

$$
\left[\begin{array}{c}
D_{1} v_{1} \\
\xi_{1}
\end{array}\right] D_{1} f=\frac{D_{1} f\left(\xi_{1}\right)}{D_{1} v_{1}\left(\xi_{1}\right)}=D_{1} f\left(\xi_{1}\right)
$$

because $D_{1} v_{1} \equiv 1$.

For $k \geqslant 2$, we use Lemma 2 to get

$$
\left[\begin{array}{c}
v_{0}, \ldots, v_{k} \\
x_{0}, \ldots, x_{k}
\end{array}\right] f=\left[\begin{array}{c}
D_{1} v_{1}, \ldots, D_{1} v_{k} \\
\xi_{1}, \ldots, \xi_{k}
\end{array}\right] D_{1} f
$$

for $x_{i-1}<\xi_{i}<x_{i}(i=1, \ldots, k)$. Note that $D_{1} v_{1}(x) \equiv 1$. For $i=2, \ldots, k$, the Mean Value Theorem for Stieltjes integrals [4] yields

$$
\begin{aligned}
D_{1} v_{i}(x) & =\lim _{h \rightarrow 0} \frac{\int_{i}^{x+h} \int_{c}^{t_{1}} \cdots \int_{c}^{t_{i}} d w_{1}\left(t_{i}\right) \cdots d w_{1}\left(t_{1}\right)}{\int_{x}^{x+h} d w_{1}\left(t_{1}\right)} \\
& =\lim _{h \rightarrow 0} \int_{c}^{\xi_{h}} \int_{c}^{t_{2}} \cdots \int_{c}^{t_{1}} d w_{i}\left(t_{i}\right) \cdots d w_{2}\left(t_{2}\right)
\end{aligned}
$$

with $x<\zeta_{h}<x+h$; hence

$$
D_{1} v_{i}(x)=\int_{c}^{x} \int_{c}^{t_{2}} \cdots \int_{c}^{t_{i}-1} d w_{i}\left(t_{i}\right) \cdots d w_{2}\left(t_{2}\right) \quad(i=2, \ldots, k)
$$

Setting $\quad \tilde{p}_{0} \equiv 1 \quad$ and $\quad \tilde{p}_{i}=D_{1} c_{i+1} \quad(i=1, \ldots, k-1)$, we see that $\left\{\tilde{p}_{0}, \tilde{p}_{1}, \ldots, \tilde{p}_{k-1}\right\}$ is a Markov system defined in the same way as $\left\{p_{0}, \ldots, p_{k}\right\}$, but using $\left\{w_{2}, \ldots, w_{k}\right\}$. Let the corresponding relative differentiation operators be denoted by \tilde{D}_{i}. By the induction hypothesis we then have

$$
\begin{aligned}
{\left[\begin{array}{c}
v_{0}, \ldots, v_{k} \\
x_{0}, \ldots, x_{k}
\end{array}\right] f } & =\left[\begin{array}{c}
D_{1} v_{1}, \ldots, D_{1} v_{k} \\
\xi_{1}, \ldots, \xi_{k}
\end{array}\right] D_{1} f \\
& =\widetilde{D}_{k-1}\left(D_{1} f\right)\left(\zeta_{k}\right)=D_{k} f\left(\zeta_{k}\right)
\end{aligned}
$$

for $\xi_{1}<\zeta_{k}<\zeta_{k}$; i.e., $x_{0}<\zeta_{k}<x_{k}$. This completes the proof of Theorem 2.

3. Divided Differences and Proof of Theorem 3

The proof of Theorem 3 is based on several propositions of some independent interest.

Lemma 3. Let f, g, and w be continuous in $[a, b]$, with w strictly increasing and g positive in (a, b). Then for some $\xi \in(a, b)$,

$$
\frac{\int_{a}^{b} f(t) d w(t)}{\int_{a}^{b} g(t) d w(t)}=\frac{f(\xi)}{g(\xi)}
$$

Proof. By the Mean Value Theorem for Stieltjes integrals, for all $a \leqslant c<d \leqslant b$, there is an $\eta_{1} \in[c, d]$ such that

$$
\begin{equation*}
f\left(\eta_{1}\right)=\frac{1}{w(d)-w(c)} \int_{c}^{d} f(t) d w(t) . \tag{2}
\end{equation*}
$$

Similarly, for all $a \leqslant c<d \leqslant b$, there is an $\eta_{2} \in[c, d]$ such that

$$
\begin{equation*}
g\left(\eta_{2}\right)=\frac{1}{w(d)-w(c)} \int_{c}^{d} g(t) d w(t) . \tag{3}
\end{equation*}
$$

Let

$$
F(x)=\int_{a}^{x} f(t) d w(t), \quad G(x)=\int_{a}^{x} g(t) d w(t)
$$

and set $Q(x)=F(x) G(b)-F(b) G(x)$. Since $Q(a)=Q(b)=0, Q$ has a relative extremum $\zeta \in(a, b)$. Thus, in a neighborhood of ζ,

$$
\begin{equation*}
\delta \cdot \operatorname{sgn}(x-\xi) \cdot \operatorname{sgn} \frac{Q(x)-Q(\xi)}{w(x)-w(\xi)}=\eta, \tag{4}
\end{equation*}
$$

where $\delta= \pm 1$ and η depends on x and equals zero or one. However,

$$
\begin{equation*}
\frac{Q(x)-Q(\xi)}{w(x)-w(\xi)}=\frac{F(x)-F(\xi)}{w(x)-w(\xi)} G(b)-F(b) \frac{G(x)-G(\xi)}{w(x)-w(\xi)} . \tag{5}
\end{equation*}
$$

From (2), (3), and (5) we have

$$
\lim _{x \rightarrow \xi} \frac{Q(x)-Q(\xi)}{w(x)-w(\xi)}=f(\xi) G(b)-F(b) g(\xi) .
$$

On the other hand, (4) implies that

$$
\lim _{x \rightarrow \xi} \frac{Q(x)-Q(\xi)}{w(x)-w(\xi)}=0,
$$

hence

$$
\frac{F(b)}{G(b)}=\frac{f(\xi)}{g(\xi)} .
$$

Lemma 4. Let w_{1}, \ldots, w_{n} be continuous, strictly increasing functions
defined on an interval I and let $p_{i}(x)$ be given by (1). Then for all $x_{0}<\cdots<x_{n-1}$ in I,

$$
\left[\begin{array}{c}
p_{0}, \ldots, p_{i} \\
x_{0}, \ldots, x_{i-1}
\end{array}\right] p_{i}=w_{i}\left(\xi_{i-1}\right)-w_{i}(c) \quad(i=1, \ldots, n)
$$

where $\xi_{0}=x_{0}$ and $x_{0}<\xi_{i}<x_{i}(i=1, \ldots, n-1)$.
Proof. The proof is by induction on n. For $n=1$, we have

$$
\left[\begin{array}{c}
p_{0} \\
x_{0}
\end{array}\right] p_{1}=p_{1}\left(x_{0}\right)=\int_{c}^{x_{0}} d w_{1}\left(t_{1}\right)=w_{1}\left(x_{0}\right)-w_{1}(c)=w_{1}\left(\xi_{0}\right)-w_{1}(c)
$$

For $n=2$, we have

$$
\begin{aligned}
{\left[\begin{array}{c}
p_{0}, p_{1} \\
x_{0}, x_{1}
\end{array}\right] p_{2} } & =\frac{p_{2}\left(x_{1}\right)-p_{2}\left(x_{0}\right)}{p_{1}\left(x_{1}\right)-p_{1}\left(x_{0}\right)}=\frac{\int_{x_{0}}^{x_{1}}\left(\int_{c}^{t_{1}} d w_{2}\left(t_{2}\right) d w_{1}\left(t_{1}\right)\right)}{\int_{x_{0}}^{x_{1}} d w_{1}\left(t_{1}\right)} \\
& =\int_{c}^{\xi_{1}} d w_{2}\left(t_{2}\right)=w_{2}\left(\xi_{1}\right)-w_{2}(c)
\end{aligned}
$$

for some $x_{0}<\xi_{1}<x_{1}$, by Lemma 3.
Define $q_{0}(x) \equiv 1$ and

$$
q_{i}(x)=\int_{c}^{x} \int_{c}^{t_{2}} \cdots \int_{c}^{t_{1}} d w_{i+1}\left(t_{i+1}\right) \cdots d w_{2}\left(t_{2}\right) \quad(i=1, \ldots, n-1)
$$

Then

$$
p_{i}(x)=\int_{c}^{x} q_{i-1}\left(t_{1}\right) d w_{1}\left(t_{1}\right) \quad(i=1, \ldots, n)
$$

Proceeding as in [1, XI, Lemma 2.1] we obtain

$$
\operatorname{det}\left\{p_{i}\left(x_{j}\right)\right\}_{i, j=0}^{k}=\int_{x_{0}}^{x_{1}} \cdots \int_{x_{k-1}}^{x_{k}} \operatorname{det}\left\{q_{i}\left(t_{j}\right)\right\}_{i, j=0}^{k-1} d w_{1}\left(t_{k} 1\right) \cdots d w_{1}\left(t_{0}\right) .
$$

It follows by a straightforward inductive procedure that $\left\{p_{i}\right\}_{i=0}^{n}$ is a Markov system. Moreover, for $k \geqslant 2$, we have

$$
\begin{aligned}
& {\left[\begin{array}{l}
p_{0}, \ldots, p_{k-1} \\
x_{0}, \ldots, x_{k}, 1
\end{array}\right] p_{k}} \\
& \quad=\frac{\operatorname{det}\left\{p_{i}\left(x_{j}\right)\right\}_{(i=0, \ldots, k-2, k ; j=0, \ldots, k-1)}}{\operatorname{det}\left\{p_{i}\left(x_{j}\right)\right\}_{(i, j=0, \ldots, k-1)}} \\
& \quad=\frac{\left.\int_{x_{0}}^{x_{1}} \cdots \int_{x_{k-2}}^{x_{k}-1} \operatorname{det}\left\{q_{i}\left(t_{j}\right)\right\}_{(i=0, \ldots, k-3, k \cdot 1, j=0, \ldots, k},{ }_{2}\right) d w_{1}\left(t_{k-2}\right) \cdots d w_{1}\left(t_{0}\right)}{\int_{x_{0}}^{x_{1}} \cdots \int_{x_{k-2}}^{\left.x_{k-1} \operatorname{det}\left\{q_{i}\left(t_{j}\right)\right\}_{(i, j=0, \ldots k}, 2\right) d w_{1}\left(t_{k}, 2\right) \cdots d w_{1}\left(t_{0}\right)} .} .
\end{aligned}
$$

Using Lemma 3 repeatedly we get

$$
\left[\begin{array}{c}
p_{0}, \ldots, p_{k-1} \\
x_{0}, \ldots, x_{k}
\end{array}\right] p_{k}=\left[\begin{array}{l}
q_{0}, \ldots, q_{k-2} \\
\eta_{0}, \ldots, \eta_{k-2}
\end{array}\right] q_{k} \quad 1,
$$

with $x_{i}<\eta_{i}<x_{i+1}(i=0, \ldots, k-2)$.
By the inductive hypothesis, this equals $w_{k}\left(\begin{array}{ll}\xi_{k} & 1\end{array}\right)-w_{k}(c)$, for $x_{k} \quad 2<\zeta_{k} \quad 1<x_{k-1}$.

Lemma 5. Let A have property D and let Z_{n} be a Markov system on A with a representation (h, c, W_{n}, U_{n}) such that the w_{i} are strictly increasing on $(\inf h(A), \sup h(A))$. Then for any $x_{0}<\cdots<x_{n-1}$ in A,

$$
\left[\begin{array}{cc}
z_{0}, \ldots, z_{i}-1 \\
x_{0}, \ldots, x_{i} & 1
\end{array}\right] z_{i}=\left[\begin{array}{c}
u_{0}, \ldots, u_{i-1} \\
x_{0}, \ldots, x_{i} \\
1
\end{array}\right] u_{i}=w_{i}\left(\xi_{i} 11\right)-w_{i}(c)
$$

where $\xi_{0}=h\left(x_{0}\right)$ and $h\left(x_{0}\right)<\xi_{i}<h\left(x_{i}\right)(i=1, \ldots, n-1)$.
Remark 6. By [8, Corollary] such a representation with w_{i} strictly increasing exists.

Proof of Lemma 5. The first equality is a consequence of the fact that $\left\{u_{0}, \ldots, u_{n}\right\}$ is obtained from $\left\{z_{0}, \ldots, z_{n}\right\}$ by a triangular linear transformation. Let $q_{i}=u_{i} / u_{0}(i=0, \ldots, n)$; then $q_{0}(x) \equiv 1$ and

$$
\left[\begin{array}{c}
u_{0}, \ldots, u_{i} \\
x_{0}, \ldots, x_{i-1}
\end{array}\right] u_{i}=\left[\begin{array}{c}
q_{0}, \ldots, q_{i-1} \\
x_{0}, \ldots, x_{i}
\end{array}\right] q_{i} \quad(i=1, \ldots, n)
$$

The functions q_{i} can be written as $q_{i}=p_{i} \circ h$ for p_{i} satisfying the hypotheses of Lemma 4. Since

$$
\left[\begin{array}{c}
q_{0}, \ldots, q_{i} \\
x_{0}, \ldots, x_{i}
\end{array}\right] q_{i}=\left[\begin{array}{c}
p_{0}, \ldots, p_{i-1} \\
h\left(x_{0}\right), \ldots, h\left(x_{i . .}\right)
\end{array}\right] p_{i}
$$

the assertion follows from Lemma 4.
Before proving Theorem 3, we introduce an additional definition.

Definition 9. A set Z_{n} defined on a set A is called endpoint nondegenerate (END) if for any point $c \in A$ the restrictions of its linear span S to $(-\infty, c) \cap A$ and $A \cap(c, \infty)$ have the same dimension as $S . S$ is then called an END space.

Proof of Theorem 3. (b) \Rightarrow (a) Suppose that $\inf A \in A$ and $\sup A \notin A$. Let c be a point of A that is not an endpoint. From [5, Theorem 1], Z_{n} has a representation $\left(h, c, W_{n}, U_{n}\right)$. As in the proof of [7, Theorem 2], it
follows that both parts (a) and (b) of Definition 1 are satisfied. If inf $A \in A$ and $c=\inf A$ then part (a) of Definition 1 is satisfied (for the same reason), and part (b) is vacuously satsfied since Z_{n} is linearly dependent on $(-\infty, c] \cap A$. A similar argument holds if $\sup A \in A$ and $\inf A \notin A$.
$(\mathrm{d}) \Rightarrow(\mathrm{c})$ and $(\mathrm{d}) \Rightarrow(\mathrm{e})$ These are immediate consequences of Lemma 5 and the second part of Remark 2, respectively.
(a) \Rightarrow (d) We may assume that Z_{n} is normalized (otherwise, divide first by z_{0}). Suppose that $\inf A \in A$. Since Z_{n} is weakly nondegenerate, it has a representation (h, c, W_{n}, U_{n}) [5, Theorem 1]. Moreover, since $\inf A \in A$ we may select $c=\inf A$. By an argument similar to the one given in the proof of $(\mathrm{b}) \Rightarrow(\mathrm{a})$ above, it follows that U_{n} is a normalized weak E-system on A. From [7, Theorem 2], U_{n} can be continued to the left to an END normalized weak Markov space, say, to $(-\infty, \inf A) \cup A$. By [8, Theorem 3], U_{n} has an integral representation ($\bar{h}, \tilde{c}, \tilde{W}_{n}, \tilde{U}_{n}$), and we may assume that $\tilde{c} \in A$. This implies that the \tilde{w}_{i} are bounded from below on $\bar{h}(A)$. Moreover, as in the proof of [5, Theorem 2], since A satisfies property B, the \tilde{w}_{i} must be strictly increasing on $(\inf \tilde{h}(A), \sup \tilde{h}(A))$. If $\sup A \in A$, a change of variables $t \rightarrow-t$ leads to a similar proof.
(d) \Rightarrow (b) Assume that $\inf A \in A$; then by hypothesis Z_{n} has a representation (h, c, W_{n}, U_{n}) such that the w_{i} are bounded from below on $h(A)$, and we may assume $c=\inf A$. Thus, U_{n} can be extended to the left to a Markov system by setting $h(t)=t-c$ and $w_{i}(t)=(t-c)+w_{i}(c)$, for $t<c$. A similar argument works for the case $\sup A \in A$.
(c) \Rightarrow (d) Let $A^{\prime}=A \backslash\{\inf A, \sup A\}$. By Lemma 5 and Remark $5, Z_{n}$ has a representation (h, c, W_{n}, U_{n}) on A^{\prime} such that

$$
\left[\begin{array}{l}
z_{0}, \ldots, z_{1-1} \\
x_{0}, \ldots, x_{i-1}
\end{array}\right] z_{i}=w_{i}\left(\xi_{i-1}\right)-w_{i}(c)
$$

where $\xi_{0}=h\left(x_{0}\right)$ and $h\left(x_{0}\right)<\xi_{i}<h\left(x_{i}\right)$ for $i=1, \ldots, n-1$. Suppose that $a=\inf A \in A(b=\sup A \in A)$. By Remark 4, h is continuous at a (at b), hence by (c),

$$
\begin{aligned}
& \lim _{x \rightarrow a} w_{i}(h(x))-w_{i}(c)=\liminf _{x_{0}, \ldots, x_{i}-1 \rightarrow a}\left[\begin{array}{c}
z_{0}, \ldots, z_{i-1} \\
x_{0}, \ldots, x_{i, 1}
\end{array}\right] z_{i}>-\infty \\
& \left(\lim _{x \rightarrow b} w_{i}(h(x))-w_{i}(c)=\limsup _{x_{0}, \ldots, x_{i-1} \rightarrow b}\left[\begin{array}{c}
z_{0}, \ldots, z_{i-1} \\
x_{0}, \ldots, x_{i-1}
\end{array}\right] z_{i}<\infty\right)
\end{aligned}
$$

for $i=1, \ldots, n$. Thus, (d) is valid.
(e) \Rightarrow (d) As in the proof of [5, Theorem 2], the elements of W_{n} must be strictly increasing. The assertion now follows from Lemma 5 and the second part of Remark 2.

Referfnces

1. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Wiley-Interscience, New York, 1966.
2. F. Schwenker, "Integraldarstellung schwacher Markov-Systeme," Dissertation, Universität Osnabrück, 1988.
3. M. Sommer and H. Stralss. A characterization of Descartes systems in Haar subspaces, preprint.
4. D. V. Widder, "The Laplace Transform," Princeton Univ. Press, Princeton. NJ. 1946.
5. R. A. Zalik, Integral representation and embedding of weak Markov systems, J. Approx. Theory 58 (1989), 1-11.
6. R. A. Zalik, Integral representation of Markov systems and the existence of adjoined functions for Haar spaces, J. Approx. Theory 65 (1991). 2231.
7. R. A. Zalik and D. Zwick, On extending the domain of definition of Cebyšev and weak Cebyšev systems. J. Approx. Theory 57 (1989), 202-210.
8. R. Zifleke, Relative differentiability and integral representation of a class of weak Markov systems, J. Approx. Theory 44 (1985), 30-42.

[^0]: * The second author was supported in part by an NSF grant to VT-EPSCoR. The authors thank the Centro Atomico Bariloche, Argentina, for their hospitality during the completion of this paper, and the referees for their careful reading of the paper and suggestions for improvements.

